Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Aqua(2,2'-bipyridine- $\kappa^2 N, N'$)(pyridine-2.6-dicarboxylate N-oxide- $\kappa^2 O^1 O^2$) copper(II) trihydrate

Xin-Yan Zhang

Li Shui Vocational & Technical College, Lishui, Zhejiang 323000, People's Republic of China

Correspondence e-mail: zjlsxa@126.com

Received 14 April 2007; accepted 11 May 2007

Key indicators: single-crystal X-ray study; T = 297 K; mean σ (C–C) = 0.008 Å; R factor = 0.045; wR factor = 0.140; data-to-parameter ratio = 14.6.

In the title complex, $[Cu(C_7H_3NO_5)(C_{10}H_8N_2)(H_2O)]\cdot 3H_2O$, the Cu^{II} atom has a slightly distorted square-pyramidal coordination geometry, with a basal plane formed by two N atoms of the 2,2'-bipyridine ligand and two O atoms of the pyridine-2,6-dicarboxylate N-oxide. The apical position is occupied by a water molecule. The crystal structure contains $O-H \cdots O$ intermolecular hydrogen bonds.

Related literature

For related literature, see: Moulton & Zaworotko (2001); Paul (1984); Wen et al. (2005).

Experimental

Crystal data

[Cu(C7H3NO5)(C10H8N2)- $\beta = 81.584 \ (2)^{\circ}$ $(H_2O)]\cdot 3H_2O$ $M_r = 472.89$ Triclinic, $P\overline{1}$ a = 6.8293 (2) Å b = 11.8827 (4) Å c = 12.5673 (4) Å $\alpha = 86.136(2)^{\circ}$

Data collection

Bruker SMART APEX areadetector diffractometer Absorption correction: multi-scan (SADABS: Sheldrick, 1996) $T_{\min} = 0.804, T_{\max} = 0.894$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.045$ $wR(F^2) = 0.140$ S = 1.033953 reflections 271 parameters

 $\gamma = 86.151 \ (2)^{\circ}$ V = 1004.87 (6) Å³ Z = 2Mo $K\alpha$ radiation $\mu = 1.14 \text{ mm}^-$ T = 297 (2) K $0.20 \times 0.18 \times 0.10 \text{ mm}$

13440 measured reflections 3953 independent reflections 3133 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.031$

2 restraints
H-atom parameters constrained
$\Delta \rho_{\rm max} = 1.14 \text{ e } \text{\AA}^{-3}$
$\Delta \rho_{\rm min} = -0.45 \text{ e } \text{\AA}^{-3}$

Table 1	
Hydrogen-bond geometry (Å,	°).

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$O1-H1A\cdots O7^{i}$	0.85	1.94	2.733 (5)	154
$O1-H1B\cdots O5^{i}$	0.85	2.09	2.867 (5)	152
$O1 - H1B \cdot \cdot \cdot O4^{i}$	0.85	2.53	3.265 (5)	144
$O7-H7A\cdots O3^{ii}$	0.86	1.93	2.780 (6)	171
$O7 - H7B \cdot \cdot \cdot O2^{i}$	0.86	1.97	2.813 (5)	166
$O8-H8A\cdots O2^{i}$	0.89	1.88	2.716 (8)	157
$O8-H8B\cdots O9$	0.97	2.17	2.735 (12)	116
$O9-H9A\cdots O3^{ii}$	0.89	1.92	2.768 (7)	158
$O9 - H9B \cdots O9^{iii}$	0.89	2.46	2.930 (19)	113

Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) -x + 2, -y + 1, -z + 1; (iii) -x + 2, -y, -z.

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1998); software used to prepare material for publication: SHELXTL.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2059).

References

Bruker (1998). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.

Moulton, B. & Zaworotko, M. J. (2001). Chem. Rev. 101, 1629-1658.

Paul, D. B. (1984). Aust. J. Chem. 37, 87-93.

- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Wen, L.-L., Dang, D.-B., Duan, C.-Y., Li, Y.-Z., Tian, Z.-F. & Meng, Q.-J. (2005). Inorg. Chem. 44, 7161-7170.

supplementary materials

Acta Cryst. (2007). E63, m1690 [doi:10.1107/S160053680702315X]

Aqua(2,2'-bipyridine- $\kappa^2 N,N'$)(pyridine-2,6-dicarboxylate *N*-oxide- $\kappa^2 O^1,O^2$)copper(II) trihydrate

X.-Y. Zhang

Comment

Many of the efforts have so far devoted to the study of transition-metal-based coordination polymers because of their potential applications as functional solid materials in ion exchange, catalysis, and optical electronic and magnetic devices (Moulton & Zaworotko, 2001; Wen *et al.*, 2005). Pyridine-2,6-dicarboxylic acid N-oxide (pydco) shows limited steric hindrance and weak stacking interactions and can offer possibilities to form coordination polymers through a bridge formed by a carboxylate and N-oxide, which is a better electron donor than the ring N atom of pydco (Paul, 1984; Wen *et al.*, 2005)

The Cu1 atom in the title complex, (I), has a distorted square-pyramidal coordination geometry (Fig.1). The basal plane formed by two N atoms from the 2,2'-pyridine ligand and two O atoms from the pydco ligand. The apical position is occupied by a water molecule. A long distance [2.905 (3) Å] between Cu1 and O5(2 - x, 1 - y, 1 - z) at the other apical position indicates a very weak interaction. In the crystal structure, the intermolecular hydrogen bonds between the lattice water molecules and the coordination water molecule, and between the lattice water molecules and carboxylate O atoms form a sheet structure (Table 1). The sheets are linked by $\pi \cdots \pi$ interactions, forming a three dimensional supramolecular structure.

Experimental

Pydco(0.050 g, 8 mmol), Cu $(CH_3COO)_2$ (0.180 g, 12 mmol) and 2,2-pyridine (0.230 g, 15 mmol) were added in a mixed solvent of dry ethanol and acetonitrile. The mixture was heated for 5 h under reflux. During the process stirring and influx were required. The resultant was then filtered to give a pure solution which was infiltrated by diethyl ether freely in a closed vessel. After a week, single crystals of (I), suitable for X-Ray diffraction, were obtained.

Refinement

H atoms on water molecules were located in a difference Fourier map and fixed in the refinement with $U_{iso}(H) = 1.5U_{eq}(O)$. The other H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93Å and $U_{iso}(H) = 1.2U_{eq}(C)$. The highest residual electron density was found 2.22Å from atom H2. Figures

Fig. 1. The molecular structure of (I). Displacement ellipsoids are drawn at the 30% probability level.

 $Aqua[(pyridine-2,6-dicarboxylato-N-oxide-\kappa^2O^1,O^2) (2,2^1-bipyridine-\kappa^2N,N^1)] copper(II) \ trihydrate$

Crystal data

$[Cu(C_7H_3NO_5)(C_{10}H_8N_2)(H_2O)]$ ·3H ₂ O	Z = 2
$M_r = 472.89$	$F_{000} = 486$
Triclinic, PT	$D_{\rm x} = 1.563 {\rm ~Mg~m}^{-3}$
Hall symbol: -P 1	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
a = 6.8293 (2) Å	Cell parameters from 3133 reflections
b = 11.8827 (4) Å	$\theta = 1.6 - 26.0^{\circ}$
c = 12.5673 (4) Å	$\mu = 1.14 \text{ mm}^{-1}$
$\alpha = 86.136 \ (2)^{\circ}$	T = 297 (2) K
$\beta = 81.584 \ (2)^{\circ}$	Block, blue
$\gamma = 86.151 \ (2)^{\circ}$	$0.20\times0.18\times0.10~mm$
V = 1004.87 (6) Å ³	

Data collection

Bruker SMART APEX area-detector diffractometer	3953 independent reflections
Radiation source: fine-focus sealed tube	3133 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.031$
T = 297(2) K	$\theta_{\text{max}} = 26.0^{\circ}$
ϕ and ω scans	$\theta_{\min} = 1.6^{\circ}$
Absorption correction: multi-scan SADABS (Sheldrick, 1996)	$h = -8 \rightarrow 8$
$T_{\min} = 0.804, \ T_{\max} = 0.894$	$k = -14 \rightarrow 14$
13440 measured reflections	$l = -15 \rightarrow 15$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites

$R[F^2 > 2\sigma(F^2)] = 0.045$	H-atom parameters constrained
$wR(F^2) = 0.140$	$w = 1/[\sigma^2(F_o^2) + (0.0811P)^2 + 0.7343P]$ where $P = (F_o^2 + 2F_o^2)/3$
<i>S</i> = 1.03	$(\Delta/\sigma)_{\rm max} < 0.001$
3953 reflections	$\Delta \rho_{max} = 1.14 \text{ e} \text{ Å}^{-3}$
271 parameters	$\Delta \rho_{min} = -0.45 \text{ e } \text{\AA}^{-3}$
12 restraints	Extinction correction: none
Primary atom site location: structure-invariant direct	

methods

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Cu1	0.73423 (8)	0.66865 (4)	0.54386 (4)	0.0387 (2)
N1	0.8064 (5)	0.5462 (3)	0.7427 (3)	0.0340 (8)
N2	0.7508 (6)	0.8345 (3)	0.5462 (3)	0.0434 (9)
N3	0.7073 (5)	0.7095 (3)	0.3898 (3)	0.0399 (8)
C1	0.7578 (8)	0.8909 (4)	0.6340 (5)	0.0544 (13)
H1	0.7615	0.8507	0.6998	0.065*
C2	0.7598 (8)	1.0069 (4)	0.6297 (6)	0.0673 (17)
H2	0.7645	1.0449	0.6916	0.081*
C3	0.7546 (8)	1.0655 (4)	0.5315 (6)	0.0687 (18)
Н3	0.7577	1.1438	0.5264	0.082*
C4	0.7450 (8)	1.0084 (4)	0.4411 (5)	0.0613 (15)
H4	0.7398	1.0476	0.3748	0.074*
C5	0.7430 (7)	0.8909 (4)	0.4501 (4)	0.0464 (11)
C6	0.7264 (7)	0.8198 (4)	0.3611 (4)	0.0455 (11)
C7	0.7262 (9)	0.8595 (5)	0.2544 (5)	0.0705 (17)
H7	0.7398	0.9357	0.2347	0.085*
C8	0.7053 (10)	0.7840 (6)	0.1777 (5)	0.0756 (18)
H8	0.7048	0.8091	0.1060	0.091*
C9	0.6854 (8)	0.6722 (5)	0.2089 (4)	0.0621 (14)
H9	0.6705	0.6206	0.1587	0.074*
C10	0.6875 (7)	0.6371 (4)	0.3152 (4)	0.0483 (11)
H10	0.6749	0.5611	0.3360	0.058*
C11	0.7941 (7)	0.5565 (4)	0.8504 (3)	0.0403 (10)
C12	0.7898 (8)	0.4624 (4)	0.9192 (4)	0.0544 (13)
H12	0.7823	0.4699	0.9929	0.065*
C13	0.7967 (9)	0.3565 (4)	0.8801 (4)	0.0591 (14)
H13	0.7951	0.2922	0.9266	0.071*
C14	0.8059 (7)	0.3481 (4)	0.7708 (4)	0.0473 (11)
H14	0.8098	0.2770	0.7435	0.057*
C15	0.8096 (6)	0.4430 (3)	0.7008 (3)	0.0353 (9)
C16	0.7824 (8)	0.6755 (4)	0.8890 (3)	0.0460 (11)
C17	0.8104 (7)	0.4285 (3)	0.5819 (3)	0.0376 (9)
01	0.4036 (5)	0.6858 (3)	0.6071 (3)	0.0617 (10)
H1A	0.3575	0.6869	0.6737	0.093*
H1B	0.3193	0.6594	0.5732	0.093*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

supplementary materials

O2	0.6125 (6)	0.7199 (3)	0.9079 (3)	0.0702 (11)
O3	0.9396 (6)	0.7143 (3)	0.9032 (3)	0.0634 (10)
O4	0.7598 (5)	0.5109 (2)	0.5205 (2)	0.0484 (8)
O5	0.8520 (5)	0.3325 (2)	0.5520 (3)	0.0514 (8)
O6	0.8213 (5)	0.6428 (2)	0.6828 (2)	0.0472 (8)
O7	0.6884 (6)	0.3775 (3)	0.1792 (3)	0.0639 (10)
H7A	0.8030	0.3448	0.1597	0.096*
H7B	0.6013	0.3375	0.1596	0.096*
O8	0.5451 (13)	0.0649 (6)	0.0755 (9)	0.199 (4)
H8A	0.4633	0.1262	0.0799	0.299*
H8B	0.6187	0.0809	0.1323	0.299*
O9	0.9391 (12)	0.0685 (6)	0.0931 (9)	0.193 (4)
H9B	0.9337	0.0859	0.0239	0.290*
H9A	0.9730	0.1342	0.1132	0.290*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cu1	0.0540 (4)	0.0304 (3)	0.0327 (3)	-0.0019 (2)	-0.0102 (2)	0.00015 (19)
N1	0.037 (2)	0.0344 (17)	0.0310 (18)	-0.0007 (14)	-0.0097 (14)	0.0005 (13)
N2	0.043 (2)	0.0346 (18)	0.052 (2)	-0.0025 (16)	-0.0064 (17)	-0.0023 (16)
N3	0.037 (2)	0.043 (2)	0.039 (2)	0.0019 (15)	-0.0065 (16)	0.0039 (15)
C1	0.058 (3)	0.039 (2)	0.066 (3)	-0.003 (2)	-0.006 (3)	-0.011 (2)
C2	0.056 (3)	0.046 (3)	0.104 (5)	-0.001 (2)	-0.012 (3)	-0.028 (3)
C3	0.049 (3)	0.033 (2)	0.123 (6)	-0.002 (2)	-0.012 (3)	0.001 (3)
C4	0.042 (3)	0.042 (3)	0.097 (5)	-0.001 (2)	-0.011 (3)	0.018 (3)
C5	0.034 (3)	0.040 (2)	0.063 (3)	-0.0007 (19)	-0.005 (2)	0.007 (2)
C6	0.039 (3)	0.047 (3)	0.047 (3)	0.0040 (19)	-0.004 (2)	0.011 (2)
C7	0.073 (4)	0.066 (4)	0.065 (4)	0.003 (3)	-0.002 (3)	0.028 (3)
C8	0.084 (5)	0.100 (5)	0.038 (3)	0.007 (4)	-0.008 (3)	0.013 (3)
C9	0.059 (4)	0.088 (4)	0.040 (3)	0.000 (3)	-0.013 (2)	-0.003 (3)
C10	0.047 (3)	0.060 (3)	0.039 (3)	0.001 (2)	-0.012 (2)	-0.003 (2)
C11	0.039 (3)	0.048 (2)	0.034 (2)	0.0001 (19)	-0.0069 (18)	-0.0038 (18)
C12	0.068 (4)	0.062 (3)	0.034 (2)	-0.002 (3)	-0.011 (2)	0.005 (2)
C13	0.075 (4)	0.054 (3)	0.047 (3)	-0.003 (3)	-0.014 (3)	0.016 (2)
C14	0.054 (3)	0.039 (2)	0.048 (3)	-0.002 (2)	-0.008 (2)	0.0042 (19)
C15	0.035 (2)	0.035 (2)	0.036 (2)	0.0003 (17)	-0.0075 (17)	0.0010 (16)
C16	0.054 (3)	0.055 (3)	0.030 (2)	0.001 (2)	-0.011 (2)	-0.0052 (19)
C17	0.040 (2)	0.034 (2)	0.040 (2)	-0.0056 (17)	-0.0072 (19)	-0.0037 (17)
01	0.057 (2)	0.091 (3)	0.0394 (19)	-0.022 (2)	-0.0063 (16)	-0.0050 (17)
02	0.059 (3)	0.072 (2)	0.084 (3)	0.011 (2)	-0.017 (2)	-0.032 (2)
O3	0.060 (2)	0.067 (2)	0.069 (2)	-0.0102 (19)	-0.0181 (19)	-0.0174 (19)
O4	0.077 (2)	0.0356 (16)	0.0361 (17)	0.0006 (15)	-0.0208 (16)	-0.0035 (13)
05	0.076 (2)	0.0313 (16)	0.0492 (19)	0.0016 (15)	-0.0160 (17)	-0.0059 (13)
O6	0.076 (2)	0.0322 (15)	0.0362 (17)	-0.0070 (15)	-0.0180 (15)	0.0010 (12)
07	0.060 (2)	0.082 (3)	0.049 (2)	-0.006 (2)	-0.0057 (17)	-0.0002 (18)
08	0.183 (8)	0.102 (5)	0.341 (13)	0.055 (5)	-0.136 (8)	-0.074 (6)
09	0.153 (7)	0.092 (5)	0.327 (13)	-0.040 (5)	0.007 (7)	-0.019 (6)

Geometric parameters (Å, °)

Cu1—O4	1.910 (3)	С8—Н8	0.9300
Cu1—O6	1.925 (3)	C9—C10	1.374 (7)
Cu1—N2	1.984 (4)	С9—Н9	0.9300
Cu1—N3	1.996 (4)	C10—H10	0.9300
Cu1—O1	2.282 (4)	C11—C12	1.366 (6)
N1—O6	1.331 (4)	C11—C16	1.518 (6)
N1—C11	1.357 (5)	C12—C13	1.376 (7)
N1—C15	1.365 (5)	C12—H12	0.9300
N2—C1	1.336 (6)	C13—C14	1.376 (7)
N2—C5	1.348 (6)	С13—Н13	0.9300
N3—C10	1.340 (6)	C14—C15	1.382 (6)
N3—C6	1.345 (6)	C14—H14	0.9300
C1—C2	1.376 (7)	C15—C17	1.515 (6)
C1—H1	0.9300	C16—O3	1.237 (6)
C2—C3	1.380 (9)	C16—O2	1.239 (6)
С2—Н2	0.9300	C17—O5	1.227 (5)
C3—C4	1.373 (9)	C17—O4	1.266 (5)
С3—Н3	0.9300	O1—H1A	0.85
C4—C5	1.394 (7)	O1—H1B	0.85
C4—H4	0.9300	O7—H7A	0.86
C5—C6	1.468 (7)	O7—H7B	0.86
C6—C7	1.391 (7)	O8—H8A	0.89
C7—C8	1.389 (9)	O8—H8B	0.97
С7—Н7	0.9300	О9—Н9В	0.89
C8—C9	1.370 (9)	О9—Н9А	0.89
O4—Cu1—O6	91.68 (12)	С6—С7—Н7	120.4
O4—Cu1—N2	169.20 (16)	C9—C8—C7	119.1 (5)
O6—Cu1—N2	92.21 (14)	С9—С8—Н8	120.4
O4—Cu1—N3	92.26 (14)	С7—С8—Н8	120.4
O6—Cu1—N3	166.45 (15)	C8—C9—C10	119.4 (6)
N2—Cu1—N3	81.76 (15)	С8—С9—Н9	120.3
04—Cu1—O1	99.39 (15)	С10—С9—Н9	120.3
O6—Cu1—O1	96.04 (14)	N3—C10—C9	121.8 (5)
N2—Cu1—O1	90.21 (15)	N3—C10—H10	119.1
N3—Cu1—O1	96.10 (14)	C9—C10—H10	119.1
O6—N1—C11	115.0 (3)	N1—C11—C12	120.1 (4)
O6—N1—C15	123.6 (3)	N1—C11—C16	117.1 (4)
C11—N1—C15	121.4 (4)	C12—C11—C16	122.8 (4)
C1—N2—C5	120.2 (4)	C11—C12—C13	120.4 (5)
C1—N2—Cu1	125.4 (3)	C11—C12—H12	119.8
C5—N2—Cu1	114.2 (3)	C13—C12—H12	119.8
C10—N3—C6	119.9 (4)	C12—C13—C14	118.5 (4)
C10—N3—Cu1	126.0 (3)	C12—C13—H13	120.7
C6—N3—Cu1	113.9 (3)	C14—C13—H13	120.7
N2—C1—C2	121.9 (5)	C13—C14—C15	121.4 (5)
N2 C1 U1	110.0	C13_C14_H14	110.3

supplementary materials

С2—С1—Н1	119.0	C15—C14—H14	119.3
C1—C2—C3	118.4 (6)	N1-C15-C14	118.2 (4)
C1—C2—H2	120.8	N1—C15—C17	122.9 (3)
С3—С2—Н2	120.8	C14—C15—C17	118.9 (4)
C4—C3—C2	120.2 (5)	O3—C16—O2	127.6 (5)
С4—С3—Н3	119.9	O3—C16—C11	117.2 (4)
С2—С3—Н3	119.9	O2—C16—C11	115.0 (4)
C3—C4—C5	119.0 (5)	O5—C17—O4	123.5 (4)
C3—C4—H4	120.5	O5—C17—C15	115.9 (4)
С5—С4—Н4	120.5	O4—C17—C15	120.5 (4)
N2C5C4	120.3 (5)	Cu1—O1—H1A	123.5
N2—C5—C6	115.0 (4)	Cu1—O1—H1B	120.5
C4—C5—C6	124.7 (5)	H1A—O1—H1B	109.6
N3—C6—C7	120.5 (5)	C17—O4—Cu1	129.6 (3)
N3—C6—C5	114.9 (4)	N1—O6—Cu1	124.5 (2)
C7—C6—C5	124.6 (5)	H7A—O7—H7B	107.6
C8—C7—C6	119.3 (5)	H8A—O8—H8B	96.9
С8—С7—Н7	120.4	H9B—O9—H9A	100.1

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
O1—H1A····O7 ⁱ	0.85	1.94	2.733 (5)	154
O1—H1B···O5 ⁱ	0.85	2.09	2.867 (5)	152
O1—H1B···O4 ⁱ	0.85	2.53	3.265 (5)	144
O7—H7A····O3 ⁱⁱ	0.86	1.93	2.780 (6)	171
O7—H7B···O2 ⁱ	0.86	1.97	2.813 (5)	166
O8—H8A····O2 ⁱ	0.89	1.88	2.716 (8)	157
O8—H8B…O9	0.97	2.17	2.735 (12)	116
O9—H9A····O3 ⁱⁱ	0.89	1.92	2.768 (7)	158
O9—H9B…O9 ⁱⁱⁱ	0.89	2.46	2.930 (19)	113
$(1, \dots, (1, \dots, $	10 11 11 (11)	1.2		

Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+2, -y+1, -z+1; (iii) -x+2, -y, -z.

